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Abstract:  
The use of continuous variables for cross-sectional dimensions in truss 
structural optimization gives solutions with a large number of different cross 
sections with specific dimensions which in practice would be expensive, or 
impossible to create. Even slight variations from optimal sizes can result in 
unstable structures which do not meet constraint criteria. This paper shows 
the influence of the use of discrete cross section sizes in optimization and 
compares results to continuous variable counterparts. In order to achieve 
the most practically applicable design solutions, Euler buckling dynamic 
constraints are added to all models. A typical space truss model from 
literature, which use continuous variables, is compared to the discrete 
variable models under the same conditions. The example model is 
optimized for minimal weight using sizing and all possible combinations of 
shape and topology optimizations with sizing.  
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1. INTRODUCTION 
 

Truss structural optimization is a complex 
process which if done correctly can result in 
directly applicable design solutions of favourable 
characteristics, compared to those which would be 
achieved through the use of conventional design 
methods. This process is very beneficial, as it can 
result in lighter, more rigid, and less expensive 
structures, while maintaining structural integrity, 
through optimizing different parameters. The 
formulation of the design problem needs to be as 
accurate to real-world applications as possible, 
while still being manageable for the optimization 
method used. In many truss optimization papers 
published to date, continuous sizing variables are 
still used. This presents a problem, as such a high 
accuracy of cross-sectional dimensions cannot be 
achieved in practice. 

In order to have optimal results which meet all 
needed criteria, the same constraints must be used 
in optimization as are checked for in analytical 
approaches. These mainly consider static, or 
constant, constraints such as maximal allowed 
stress and maximal displacement at joints. As 
buckling constraints change in each iteration, they 
are considered dynamic constraints.  

Many researchers in recent years have used 
various optimization methods to achieve optimal 
results without considering buckling constraints for 
different optimization types [1-4]. Bekdas et al. [5] 
used flower pollination algorithm to achieve 
competitive results in continuous sizing 
optimization, testing their algorithm on numerous 
standard truss problems. 

Authors in [6] used continuous variables for 
truss sizing optimization on examples with 10, 17 
and 25 bars with the added dynamic buckling 
constraint, showing the influence of the added 
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constraint on optimal weight compared to work in 
[7], which did not consider buckling. In [8] 
researchers used continuous cross-sectional 
parameters for truss optimization of sizing, shape, 
topology and all their combinations.  

Gonçalves et al. [9] have used discrete sizing 
variables with buckling constraints on 10, 37, and 
20 bar truss examples in a few combinations of 
optimization types with great results. Hasancebi 
and K. Azad [10] developed an adaptive 
dimensional search algorithm specifically for 
discrete truss sizing optimization. Their research 
considers fixed slenderness ratios for tension and 
compression members as well as stress and 
displacement constraints. Discrete sizing 
optimization was proposed by Cheng et al. in [11], 
and tested on typical truss problems, however 
discrete variable sets were arbitrarily set to 
accommodate larger or smaller ranges in 
diameters. Researchers in [12] gave a comparison 
of the use of continuous and discrete sizing on a 10 
bar truss example. 

The goal of this research is to show the 
insignificant difference in resulting weight between 
discrete and continuous variables in truss cross-
section optimization results. There is a big 
advantage to using discrete cross-sectional 
dimension variables, which is mainly reflected in 
practical application, and availability of stock sizes. 
The motivation behind this research is the need for 
achieving minimal weight design concepts which 
meet all real-world application criteria, thereby 
eliminating the need for extensive revision or 
adaptation of the optimal model.  

 
2. STRUCTURAL OPTIMIZATION PROBLEM 

 
Optimization is the process of finding solutions 

from a group of alternative possible solutions. 
These solutions necessitate better characteristics 
of the construction, while at the same time 
decreasing invested effort and expended costs [6]. 
Parametric truss structural optimization is an 
iterative process which is used to improve desired 
characteristics of a truss structure. The basic types 
of parametric optimization are sizing optimization, 
where cross-sectional parameters are considered 
variable, topology optimization, where the 
connections of nodes by bars are variable, and 
shape optimization, where, some or all coordinates, 
of, some or all nodes, are considered variable. By 
combining any two, or all three, of these 
optimization types simultaneously resulting 
structures can have more favourable 

characteristics, and take on designs which would 
not be possible through conventional engineering 
design methods. 

Goal functions are generally minimal weight, 
price, stiffness, or some combination of those. This 
research will focus on minimizing weight, which is 
defined as follows:  
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where n is the number of truss elements, k is 
the number of nodes, li is the length of the ith 
element, Ai is the area of the ith element cross 
section, σi is the stress of the ith element, and uj is 
displacement of the jth node. 

In addition to these standard constraints, in 
order to achieve a structure which is practically 
applicable and not subjected to buckling, the use 
of dynamic constraints for buckling are also used. 
The addition of this constraint increases the 
complexity of the optimization problem 
significantly. Since in the expression for Euler 
buckling (2) the same areas figure as denominators 
on both sides of the expression, the critical force 
load (3) can be used as the buckling constraint to 
minimize calculation. The constraint then is given 
as (4). 
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where σAi is the axial compression stress, and σKi is 
the critical buckling stress of the ith element. FAi

comp 
is the axial compression force, FKi is Euler’s critical 
load, Ei is the modulus, and Ii is the minimum area 
moment of inertia of the cross section of the of the 
ith element. The constraint from equation (4) is 
therefore added to the existing constraints in (1). 
For the purposes of this research Genetic 
algorithm (GA) is used. GA is a heuristic method for 
optimizing whose operation is based on mimicking 
natural processes [13]. Heuristic methods, such as 
GA, are preferred for engineering problems due to 
their favourable characteristics. They have the 
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ability to work with a large number of variables, 
overcoming local extremes, they have a high speed 
and efficiency of work, and a low threshold of 
needed facts about the problem in order to find a 
solution. 

 
3. EXAMPLE AND RESULTS 
 

For the purposes of this research sizing 
optimization as well as all possible combinations of 
structural optimization which consider cross-
sections as variables, will be compared in order to 
show the influence of the use of discrete variables 
as opposed to continuous variables on the results. 
The 25 bar space truss is commonly found in 
literature and was selected as the test example. 

 
3.1 Example formulation 

 
The 25 bar truss problem’s bar and node layout 

is given in Fig.1. Truss elements are made from 
Aluminium 6063-T5 whose characteristics are: 
Young modulus 68947 MPa, and density of 2.7 
g/cm3. Force vectors in nodes are as follows: node 
1 (4.448, -44.48, -44.48) kN, node 2 (0, -44.48, -
44.48) kN, node 3 (2.224, 0, 0) kN, and node 6 
(2.6688, 0, 0) kN.  

This space truss has cross sections of members 
grouped as follows: 1 (A1), 2 (A2 – A5), 3 (A6 – A9), 4 
(A10 – A11), 5 (A12 – A13), 6 (A14 – A17), 7 (A18 – A21), 8 
(A22 – A25). Optimization is limited with a tensile 
stress limit for all bar groups of 40 kN, and a 
maximal displacement of ±0.00889 m for all nodes 
in all directions, and Euler buckling constraints for 
all bars.  

For the optimization cases which consider 
shape, the following node coordinate constraints 
are used: 
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Optimization types where topology is 
considered, can eliminate only entire groups of 
elements. 

The continuous variable calculation has a 
minimal diameter limit of 1.433 mm. The discrete 
set of variables for full round cross-section of 
Aluminium 6063-T5 was compiled with available 

standard dimensions from several vendors. There 
are 50 possible cross-section profiles diameters 
ranging from 12 mm (1.131 cm2) to 356 mm 
(995.382 cm2). Namely diameters are: 12, 16, 20, 
25, 30, 34, 35, 40, 45, 55, 60, 65, 70, 75, 80, 85, 90, 
95, 100, 105, 110, 115, 120, 125, 130, 140, 145, 
150, 152, 160, 165, 170, 175, 178, 180, 190, 200, 
210, 220, 230, 240, 250, 254, 260, 270, 278, 280, 
300, 305, 356, given in mm. 

The parametric model and optimization for this 
research were all done in an original software 
developed by the authors in Rhinoceros 5.0. This 
visually programmed software is based in 
Grasshopper, using Galapagos optimization, and 
Karamba plugins. The optimization method used is 
genetic algorithm due to availability. 

 

Fig. 1. 25 bar truss configuration 

 
3.2 Results 
 

Optimal results of just shape, just topology and 
their combination were not considered in this 
research as they do not take into account any 
change in cross-section dimensions. Table 1 gives 
node coordinates for optimization cases where 
shape is considered for continuous and discrete 
variable models separately. Resulting design 
concepts which use discrete cross-sectional 
variables are given in Fig.2. 

Results of all optimization types, including 
cross-section areas by bar group, construction 
weight and maximal displacement are compared 
for both conrinuous and discrete cross-section 
parameters, and are given in Table 2. 
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a) 

 
b) 

  
c) 

 
d) 

Fig. 2. Optimal results using discrete sizing variables for 
a) sizing, b) sizing and topology, c) sizing and shape, and 

d) sizing, shape and topology optimization. 

Table 1. Node coordinates according to variable and 
optimization type 

Node 
coordinate 

Variable 
type 

Sizing 
and 

Shape  

Sizing, 
Shape and 
Topology 

-X3, X4,  X5, -X6 
[m] 

Cont. 0.508 0.875 

Discr. 0.508 0.995 

Y3, Y4,  -Y5, -Y6 
[m] 

Cont. 1.342 1.228 

Discr. 1.300 1.224 

Z3, Z4,  Z5, Z6 
[m] 

Cont. 2.377 2.593 

Discr. 2.460 2.590 

-X7, X8,  X9, -X10 
[m] 

Cont. 1.016 1.016 

Discr. 1.016 1.016 

Y7, Y8,  -Y9, -Y10 
[m] 

Cont. 2.540 2.540 

Discr. 2.540 2.540 

 

4. CONCLUSION  
 
Results obtained by using continuous variables 

give cross-section dimensions which are practically 
impossible to produce. Aside from this, the 
resulting structures have all, or almost all, different 
cross sections. Given that dimensional tolerances 
for cold formed profiles are rather high, the 
specific dimensions achieved through the use of 
continuous variables is impossible to produce. As 
these structures are usually at an optimum where 
even small divergences from their optimal 
dimensions result in an unstable structure, it can 
be concluded that the use of continuous cross-
sectional variables is unacceptable for practical 
application.  

This paper gives a comparison of optimal results 
for all possible structural optimizations which 
consider cross-section dimensions as variables 
using discrete and continuous variables on the 
same example. Results show a difference of 
around 6%, or 39.143 kg, greater optimal weight 
for the sizing optimization using discrete variables 
from its continuous variable counterpart.  For the 
sizing and topology combination the difference is 
around 3.2%, or 21.085 kg. The sizing and shape 
combination has about a 3.7%, or 14.859 kg, 
difference in optimal weight when using discrete 
variables. When optimizing the truss 
simultaneously for sizing, shape and topology, the 
difference is only around 0.57%, or 1.865 kg. These 
small differences are insignificant compared to the 
advantages of having an optimal model which can 
be practically applicable. 

Further research in this field will include the 
limiting of the possible number of different cross-
sections used. 
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Table 2. Comparison of bar cross-section group areas, displacements, and optimal weights for continuous and discrete 
optimization models. 
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